Lifting systems of Galois representations associated to abelian varieties
نویسنده
چکیده
This paper treats what we call ‘weak geometric liftings’ of Galois representations associated to abelian varieties. This notion can be seen as a generalization of the idea of lifting a Galois representation along an isogeny of algebraic groups. The weaker notion only takes into account an isogeny of the derived groups and disregards the centres of the groups in question. The weakly lifted representations are required to be geometric in the sense of a conjecture of Fontaine andMazur. The conjecture in question states that any irreducible geometric representation is a twist of a subquotient of an étale cohomology group of an algebraic variety over a number field. It is shown that a Galois representation associated to an abelian variety admits a weak geometric lift to a group with simply connected derived group. In certain cases, such a weak geometric lift is itself associated to an abelian variety. This means that the conjecture of Fontaine and Mazur is confirmed for these representations. In other cases, one may find a lift which can not be found back in the étale cohomology of any abelian variety. The Fontaine–Mazur conjecture remains open for these representations. Nevertheless, certain consequences of the conjecture can be established. 2000 Mathematics Subject Classification 11G10, 11F80, 14K15
منابع مشابه
Lifting Galois Representations, and a Conjecture of Fontaine and Mazur
Mumford has constructed 4-dimensional abelian varieties with trivial endomorphism ring, but whose Mumford–Tate group is much smaller than the full symplectic group. We consider such an abelian variety, defined over a number field F , and study the associated p-adic Galois representation. For F sufficiently large, this representation can be lifted to Gm(Qp)× SL2(Qp) . Such liftings can be used t...
متن کاملDeformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کاملLifting subgroups of symplectic groups over
For a positive integer g, let Sp2g(R) denote the group of 2g× 2g symplectic matrices over a ring R. Assume g ≥ 2. For a prime number , we give a self-contained proof that any closed subgroup of Sp2g(Z ) which surjects onto Sp2g(Z/ Z) must in fact equal all of Sp2g(Z ). The result and the method of proof are both motivated by group-theoretic considerations that arise in the study of Galois repre...
متن کاملLIFTING SUBGROUPS OF SYMPLECTIC GROUPS OVER Z/lZ
For a positive integer g, let Sp 2g(R) denote the group of 2g × 2g symplectic matrices over a ring R. Assume g ≥ 2. For a prime number l, we show that any closed subgroup of Sp 2g(Zl) that surjects onto Sp2g(Z/lZ) must in fact equal all of Sp2g(Zl). Our result is motivated by group theoretic considerations that arise in the study of Galois representations associated to abelian varieties.
متن کاملComplex multiplication and canonical lifts
The problem of constructing CM invariants of higher dimensional abelian varieties presents significant new challenges relative to CM constructions in dimension 1. Algorithms for p-adic canonical lifts give rise to very efficient means of constructing high-precision approximations to CM points on moduli spaces of abelian varieties. In particular, algorithms for 2-adic and 3-adic lifting of Frobe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004